1,729 research outputs found

    Time-Accurate Computational Fluid Dynamics Simulation of a Pair of Moving Solid Rocket Boosters

    Get PDF
    Since the Columbia accident, the threat to the Shuttle launch vehicle from debris during the liftoff timeframe has been assessed by the Liftoff Debris Team at NASA/MSFC. In addition to engineering methods of analysis, CFD-generated flow fields during the liftoff timeframe have been used in conjunction with 3-DOF debris transport methods to predict the motion of liftoff debris. Early models made use of a quasi-steady flow field approximation with the vehicle positioned at a fixed location relative to the ground; however, a moving overset mesh capability has recently been developed for the Loci/CHEM CFD software which enables higher-fidelity simulation of the Shuttle transient plume startup and liftoff environment. The present work details the simulation of the launch pad and mobile launch platform (MLP) with truncated solid rocket boosters (SRBs) moving in a prescribed liftoff trajectory derived from Shuttle flight measurements. Using Loci/CHEM, time-accurate RANS and hybrid RANS/LES simulations were performed for the timeframe T0+0 to T0+3.5 seconds, which consists of SRB startup to a vehicle altitude of approximately 90 feet above the MLP. Analysis of the transient flowfield focuses on the evolution of the SRB plumes in the MLP plume holes and the flame trench, impingement on the flame deflector, and especially impingment on the MLP deck resulting in upward flow which is a transport mechanism for debris. The results show excellent qualitative agreement with the visual record from past Shuttle flights, and comparisons to pressure measurements in the flame trench and on the MLP provide confidence in these simulation capabilities

    Development of Modeling Capabilities for Launch Pad Acoustics and Ignition Transient Environment Prediction

    Get PDF
    This paper presents development efforts to establish modeling capabilities for launch vehicle liftoff acoustics and ignition transient environment predictions. Peak acoustic loads experienced by the launch vehicle occur during liftoff with strong interaction between the vehicle and the launch facility. Acoustic prediction engineering tools based on empirical models are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. Modeling approaches are needed that capture the important details of the plume flow environment including the ignition transient, identify the noise generation sources, and allow assessment of the effects of launch pad geometric details and acoustic mitigation measures such as water injection. This paper presents a status of the CFD tools developed by the MSFC Fluid Dynamics Branch featuring advanced multi-physics modeling capabilities developed towards this goal. Validation and application examples are presented along with an overview of application in the prediction of liftoff environments and the design of targeted mitigation measures such as launch pad configuration and sound suppression water placement

    A Comparison of Airborne In Situ Cloud Microphysical Measurement with Ground-Based C-Band Radar Observations in Deep Stratiform Regions of African Squall Lines

    Get PDF
    This study addresses clouds with significant ice water content (IWC) in the stratiform regions downwind of the convective cores of African squall lines in the framework of the French–Indian satellite Megha-Tropiques project, observed in August 2010 next to Niamey (13.5°N, 2°E) in the southwestern part of Niger. The objectives included comparing the IWC–Z reflectivity relationship for precipitation radars in deep stratiform anvils, collocating reflectivity observed from ground radar with the calculated reflectivity from in situ microphysics for all aircraft locations inside the radar range, and interpreting the role of large ice crystals in the reflectivity of centimeter radars through analysis of their microphysical characteristics as ice crystals larger than 5 mm frequently occurred. It was found that, in the range of 20–30 dBZ, IWC and C-band reflectivity are not really correlated. Cloud regions with high IWC caused by important crystal number concentrations can lead to the same reflectivity factor as cloud regions with low IWC formed by a few millimeter-sized ice crystals

    Evaluation of a standard provision versus an autonomy promotive exercise referral programme: rationale and study design

    Get PDF
    Background The National Institute of Clinical Excellence in the UK has recommended that the effectiveness of ongoing exercise referral schemes to promote physical activity should be examined in research trials. Recent empirical evidence in health care and physical activity promotion contexts provides a foundation for testing the utility of a Self Determination Theory (SDT) -based exercise referral consultation. Methods/Design Design: An exploratory cluster randomised controlled trial comparing standard provision exercise on prescription with a Self Determination Theory-based (SDT) exercise on prescription intervention. Participants: 347 people referred to the Birmingham Exercise on Prescription scheme between November 2007 and July 2008. The 13 exercise on prescription sites in Birmingham were randomised to current practice (n=7) or to the SDT-based intervention (n=6). Outcomes measured at 3 and 6-months: Minutes of moderate or vigorous physical activity per week assessed using the 7-day Physical Activity Recall; physical health: blood pressure and weight; health status measured using the Dartmouth CO-OP charts; anxiety and depression measured by the Hospital Anxiety and Depression Scale and vitality measured by the subjective vitality score; motivation and processes of change: perceptions of autonomy support from the advisor, satisfaction of the needs for competence, autonomy, and relatedness via physical activity, and motivational regulations for exercise. Discussion This trial will determine whether an exercise referral programme based on Self Determination Theory increases physical activity and other health outcomes compared to a standard programme and will test the underlying SDT-based process model (perceived autonomy support, need satisfaction, motivation regulations, outcomes) via structural equation modelling. Trial registration The trial is registered as Current Controlled trials ISRCTN07682833

    Rapid Orthotics for Cure Kenya: Mechanical Design and Modeling of 3D Printed Sockets

    Get PDF
    Rapid Orthotics for Cure Kenya (ROCK) works with CURE, a non-profit orthopedic workshop in Kjabe, Kenya, to implement a 3D printing system for manufacturing custom prosthetics and orthotics. The goal is to reduce the production time and cost for the current transtibial sockets being manufactured in the orthotic clinic to give the patients a way to integrate into society and reduce stigma from their communities. The team has developed a transtibial socket for below-the-knee amputees produced by a 3D printing system that converts a scan of the residual limb to a model that takes a third of the time to print versus the current manufacturing method. The current focus of the team is to develop a rigorous testing procedure adhering to the requirements set by the ISO 10328 Standard, an internationally recognized testing method. In order to ensure the safety of the sockets, tests must be run demonstrating that the product can withstand the different forces experienced during the gait cycle. Due to the complex geometry of the applied forces outlined in the ISO 10328, the team has designed a novel testing rig that interfaces with the MTS machine at Messiah University to apply the necessary forces according to the geometry outlined in the standard. Additionally, computer-based simulations are being developed in SolidWorks, a 3D modeling software, to determine how the components will behave under certain loading conditions. This is done to ensure accordance with the 10328 Standard and will be critical in the future for developing necessary cyclic tests.https://mosaic.messiah.edu/engr2021/1013/thumbnail.jp

    Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes

    Get PDF
    Redox flow batteries using aqueous organic-based electrolytes are promising candidates for developing cost-effective grid-scale energy storage devices. However, a significant drawback of these batteries is the cross-mixing of active species through the membrane, which causes battery performance degradation. To overcome this issue, here we report size-selective ion-exchange membranes prepared by sulfonation of a spirobifluorene-based microporous polymer and demonstrate their efficient ion sieving functions in flow batteries. The spirobifluorene unit allows control over the degree of sulfonation to optimize the transport of cations, whilst the microporous structure inhibits the crossover of organic molecules via molecular sieving. Furthermore, the enhanced membrane selectivity mitigates the crossover-induced capacity decay whilst maintaining good ionic conductivity for aqueous electrolyte solution at pH 9, where the redox-active organic molecules show long-term stability. We also prove the boosting effect of the membranes on the energy efficiency and peak power density of the aqueous redox flow battery, which shows stable operation for about 120 h (i.e., 2100 charge-discharge cycles at 100 mA cm−2) in a laboratory-scale cell

    Isolation of Diverse Members of the Aquificales from Geothermal Springs in Tengchong, China

    Get PDF
    The order Aquificales (phylum Aquificae) consists of thermophilic and hyperthermophilic bacteria that are prominent in many geothermal systems, including those in Tengchong, Yunnan Province, China. However, Aquificales have not previously been isolated from Tengchong. We isolated five strains of Aquificales from diverse springs (temperature 45.2–83.3°C and pH 2.6–9.1) in the Rehai Geothermal Field from sites in which Aquificales were abundant. Phylogenetic analysis showed that four of the strains belong to the genera Hydrogenobacter, Hydrogenobaculum, andSulfurihydrogenibium, including strains distant enough to likely justify new species ofHydrogenobacter and Hydrogenobaculum. The additional strain may represent a new genus in theHydrogenothermaceae. All strains were capable of aerobic respiration under microaerophilic conditions; however, they had variable capacity for chemolithotrophic oxidation of hydrogen and sulfur compounds and nitrate reduction

    Practical Guidance for Integrating Data Management into Long-Term Ecological Monitoring Projects

    Get PDF
    Long-term monitoring and research projects are essential to understand ecological change and the effectiveness of management activities. An inherent characteristic of long-term projects is the need for consistent data collection over time, requiring rigorous attention to data management and quality assurance. Recent papers have provided broad recommendations for data management; however, practitioners need more detailed guidance and examples. We present general yet detailed guidance for the development of comprehensive, concise, and effective data management for monitoring projects. The guidance is presented as a graded approach, matching the scale of data management to the needs of the organization and the complexity of the project. We address the following topics: roles and responsibilities; consistent and precise data collection; calibration of field crews and instrumentation; management of tabular, photographic, video, and sound data; data completeness and quality; development of metadata; archiving data; and evaluation of existing data from other sources. This guidance will help practitioners execute effective data management, thereby, improving the quality and usability of data for meeting project objectives as well as broader meta-analysis and macrosystem ecology research

    'Me and my bump': an interpretative phenomenological analysis of the experiences of pregnancy for vulnerable women

    Get PDF
    Eight pregnant women, considered to be ‘vulnerable’ due to exposure to a number of underlying risk factors, participated in semi-structured interviews regarding their experiences of pregnancy and of Mellow Bumps, a 6-week targeted antenatal intervention. Interview transcripts were explored using interpretative phenomenological analysis. The analysis revealed five superordinate themes: pregnancy as a time of reflection; the body being taken over; pregnancy as an emotional rollercoaster; relationships as important; separating identities. Pre- and post-natal attachment theories were found to be useful in interpreting the data. Findings suggest that pregnancy may be ‘normalising’ and provide an important opportunity for building more positive representations of the self. Findings also provide clinical support for the assertion that the attachment relationship begins before birth. The Mellow Bumps intervention was uniformly seen as helpful. It appeared to nurture prenatal attachment relationships, playing a potentially protective role, by helping to establish the foundations for secure mother–infant relationships in the future. Meeting similar women and engaging in ordinary, supportive conversation during Mellow Bumps seemed to reduce feelings of isolation and stigma. Implications for clinical practice are considered
    • …
    corecore